Analysis of Coupled RC Shear/Core Walls by Macro Model
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Abstract

A modified macro numerical model for coupled RC shear/core walls is proposed to better consider the
deformation compatibility between the coupling beam and the wall element and to incorporate the out-of-
plane effect of the wall panel. In this model, the three-dimensional macro shear wall element model with
distributed shear springs and out-of-plane freedom is adopted to simulate the wall unit; a one-dimensional
line element consisting of three sub-units in series based on the vertical deformation compatibility is
adopted to simulate the coupling beam. The case study shows that a numerical model based on the vertical
deformation compatibility results in more accurate simulation of the mechanical behavior of the RC coupled
shear wall. The modified model developed in this study has the advantages of fast calculation and high
precision, which makes the model appropriate for engineering application.
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1. Introduction

RC shear walls have been widely used in tall
buildings in earthquake prone areas because of their
high lateral stiffness and strength. In recent decades,
a large number of numerical models have been
developed to simulate the nonlinear responses of RC
shear walls, which can be classified into two categories
in general: micro model and macro model. The finite
element model is the most representative micro model.

For engineering practice purposes, the macro model
is desirable because of its capability to reasonably
simulate the main characteristics of shear walls
using one element for one story to simplify modeling
and reduce computational efforts. Several different
types of macro models for shear walls have been
developed, ranging from a simple one-dimensional
beam element to a complicated three-dimensional
wall panel model. At first, the equivalent beam model
(EBM) was popularly applied in practice. However,
this model has a fatal defect because of the assumption
that rotations always occur around the centroidal axis
and that the fluctuation of the cross-section neutral
axis is disregarded even if the wall gets into an
inelastic state. The multi-vertical-line-element model
(MVLEM) remedying the EBM defect was proposed
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by Valcano et al. (1988). In this model, the shear wall
was represented by a set of nonlinear vertical and
horizontal springs connected by two rigid beams at the
top and the bottom. MVLEM has been widely used
in the numerical analysis of RC shear walls. Some
modified MVLEMs have been developed to improve
the prediction of the nonlinear behavior of RC shear
walls (Linde and Bachmann, 1994; Jiang et al., 2003).
However, for simplicity, the out-of-plane effect of the
wall panel is ignored in a MVLEM.

Many shear walls contain one or more vertical
rows of openings, resulting in so-called "coupled
shear walls". In coupling beam models, it has been
unanimously assumed that the rotation of the coupling
beam at the beam-wall joint is equal to that of the
horizontal fiber at the wall side of the joint (horizontal
deformation compatibility, for short). In almost all of
the macro models developed for RC coupled shear
walls, the stiffness of the coupling beam was derived on
the basis of this assumption. However, the adoption of
this definition may lead to deformation incompatibility
between the beam and the wall unit because the beam-
wall boundary is actually a vertical edge and the rotation
of the vertical fiber at the edge is not necessarily equal
to that of the horizontal fiber there, as shown in Fig.1.(a)
(Kwan, 1993). Such an incompatibility will cause
errors in the stiffness of the coupling beam and the joint
rotation, especially in those cases where the wall unit
is subjected to significant shear deformation. To ensure
compatibility between the beam and the wall element,
the rotation degree of freedom (DOF) at the beam-wall
joint should be taken as the rotation of the beam-wall
boundary, i.e., the rotation of the vertical fiber at the
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edge of the wall (vertical deformation compatibility, for
short), as shown in Fig.1.(b).

To better predict the nonlinear responses of RC
coupled shear/core walls, a modified macro numerical
model based on a MVLEM is developed in this study,
to better consider the deformation compatibility
between the coupling beam and the wall element and
incorporate the out-of-plane effect of the wall panel.
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Fig.1. Definition of Rotation DOF at the Beam-wall Joint

2. Coupling Beam Model
2.1 Element Stiffness in Local Coordinates

The one-dimensional line element consisting of
three sub-units in series, as shown in Fig.2., i.e.,
the distributed plastic flexural unit, the bond-slip
unit, and the shear unit, is adopted to simulate the
flexural deformation, the slip of the longitudinal steel
bar, and shear deformation of the coupling beam,
respectively. The additional rotation caused by the
slip of the longitudinal steel bar in the anchoring zone
is represented by the rotational spring at the end. In
the local coordinates, the equilibrium equation for the
coupling beam can be expressed as
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where u,,, u,, 0,,, are the displacement in the x, y
direction and the rotation in the z direction at the ith
node, respectively, and u;,, u;,, 8., are the displacement
in the X, y direction and the rotation in the z direction
at the jth node, respectively.

Equation 1 can be abbreviated as

F'=K.'d,' @)
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where K,' is the element stiffness matrix in local
coordinates, d.' is the displacement vector, and F.' is
the force vector.

Local coordinate  y:
system X'Y'Z'

Fig.2. Numerical Model for Coupling Beam

2.2 Element Stiffness with Vertical Deformation
Compatibility

1. Master to slave transformation matrix in local
coordinates

When the rotation DOF of the beam-wall joint is
defined by the vertical deformation compatibility, the
displacement vector and force vector can be expressed
as follows

T
' —
dz - {ulmx' 4 Z/llmy' 4 ulnx' 4 qux' 4 u2qy' b u2px'} (3)

T
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The positive direction of each parameter is shown in
Fig.3.
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Fig.3. Beam Element Model with Vertical Deformation
Compatibility

X

The deformation relationship between the beam and
the wall element is given by the following expressions:

u,.x, = ulmx. . ujx, = uqu, (5)
uiy, = ulmy" ujy' =u2qy' (6)
— ulmx' _ulnx' _ u2qx' _u2px'
6 _mx Inx [ e
izt T b jzt (7)
H H

1 2

where H, and H, are the height of the left wall and
right wall units, respectively.

The master to slave displacement transformation
equation in the local coordinates can be expressed as
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Equation 8 can be abbreviated as
d'=Jd' ©)]

where J is the master to slave transformation matrix in
local coordinates.

The following expressions can be derived by using
the force synthesis and decomposition:

F;'x' = me' +Enx' 4 F'jx' = qux' + Fv2px' (10)
F;y' = Emy' > ij' = Fqu' (11)
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The equation of the master to slave force
transformation in the local coordinates can be
expressed as
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The following equation can be derived by
transforming the above expression:
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It is obvious that the matrix in Equation 14 is the
transpose of conversion matrix J. Thus, it can be
abbreviated as

F’ZVZJTP‘C ' (15)

The stiffness matrix in the local main coordinates
can be derived as follows:

F;': z 'dZ ' (16)
K=J"K.'J (17)

2. Global to local transformation matrix of master
degree of freedom
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The displacement vector and force vector can be
expressed as follows:

dz = {ulmx s ulmy s ulmz ’ u2qx ’ quy s u2qz 4

) (18)
ulnx’ulny’ulnz7u2px3u2py’u2pz}
F; :{me’Emy’Emz’F;qx’F;qy’F;qz’ (19)
T
F;nx’Finy’Filzz’F;px’F;py’F;pz}

where ,,,, U}y, and u,,,, denote the displacement in the
X, y, and z directions at the mth node on the left wall,
respectively; F',, Fi,, and F,, denote the force in the
X, y, and z directions at the mth node on the left wall,
respectively; u,,,, u,,, and u,,, denote the displacement
in the X, y, and z directions at the nth node on the left
wall, respectively, F,,, F,, and F,, denote the force in
the x, y, and z directions at the nth node on the left wall,
respectively; uyg,, Uy, and u,,, denote the displacement
in the x, y, and z directions at the ¢gth node on the right
wall, respectively; F,, F,, and F),,, denote the force
in the x, y, and z directions at the gth node on the
right wall, respectively; u,,, u,,, and u,,, denote the
displacement in the X, y, and z directions at the pth node
on the right wall, respectively; and F,, F,, and F},
denote the force in the X, y, and z directions at the pth
node on the right wall, respectively.

Global to local displacement transformation equation
of the master degree of freedom can be derived as
follows:

cos(y) 0 —sin(y)
0 1 0
cos(y) 0 —sin(y)
cos(y) 0 —sin(y)

0 1 0
cos(y) 0 —sin(y)] .,
(20)
Equation 20 can be abbreviated as
d'=Td. 1)

where T is the global to local transformation matrix of
the master degree of freedom.

The stiffness matrix in global main coordinates can
be derived as follows:

F=K.d. (22)

KZ=TTKZ 'T (23)
2.3 Element Stiffness with Horizontal Deformation
Compatibility

1. Master to slave transformation matrix in local
coordinates

When the rotation DOF of the beam-wall joint is
defined by the horizontal deformation compatibility,
the displacement vector and force vector can be
expressed as follows:

d ' =lu, u sy o, ) (24)
z = Imx'> " 1my'> P lgy'> *2qx"> " 2qy'> “ 2my"
T
L
F'z _{me"Fimy"Fiqy"Fqu"F;qy"F;my'} (25)
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The positive direction of each parameter is shown in
Fig.4.
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Fig.4. Beam Element Model with Horizontal Deformation
Compatibility
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The deformation relationship between the beam and
the wall element is given by the following expressions:

Z’lix' = ulmx' s ujx' = Z’l2qx' (26)
Uy = Uy Uy = Uy, (27)
0. = Upgyr ~ Uiy 0 = Uygy ~Uomy

izt L s jzt T L (28)
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where L, and L, are the width of the left wall and right
wall, respectively.

The master to slave displacement transformation
equation can be expressed in local coordinates as
follows:

= \
—_

ix' Vu]mx' |
Uy, 1 Uy
o._| -vL vy Uy, 29)
ijy 1 qux’
U, 1 Uy
_912,‘ L /L, -1/L, | _u2my'J
Equation 29 can be abbreviated as
d/'=Jd’ (30)

where J is the master to slave transformation matrix in
local coordinates.

The following expressions can be derived by using
the force synthesis and decomposition:

F;x' = me' > P}x' = Fqux' (31)
F Emy + qu F F'2qy + F’2my (32)
M, =F,L, M,=-F,.L, (33)
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The master to slave force transformation equation in
local coordinates can be expressed as follows:

N
)
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Transformation of the above expression is as
follows:
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qu' — 1/Ll Miz (35)
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It is obvious that the matrix in Equation 35 is the
transpose of conversion matrix J. Thus, it can be
abbreviated as

F=J"F" (36)

The stiffness matrix in local main coordinates can be
derived as follows:

F=K.'d.' (37)

K=JTK.'J (38)

2. Global to local transformation matrix of the
master degree of freedom

The displacement vector and force vector can be
expressed as follows:

dz = {ulmx’ ulmy’ ulmz H u2qx’ u2qy > quz 2

. (39)
uqu H ulqy > ulqz H ume ° u2my 4 u2mz }
{me 4 Emy ’ Fimz 2 F‘qu 2 F;qy 2 F;qz 2
(40)

kEF F_F

lgx> = lgy>~ 1gz> " 2mx?> 2my’ 2mz}

where u,,,,, u,,,, u,,. denote the displacement in the
X, y, and z directions, respectively, on the mth node
on the left wall. F,,, F,,, F),. denote the force in the
X, y, and z directions, respectively on the mth node
on the left wall. Other parameters correspond to the
corresponding node displacement and node force.
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The global to local displacement transformation
equation of the master degree of freedom can be
derived as follows:

cos(y) 0 —sin(y)

e 010
cos(y) 0 —sin(y)
0 1 0
0 1 O 6.X12
(41)
Equation 41 can be abbreviated as:
d '=Td, (42)

where T is the global to local transformation matrix of
the master degree of freedom.

The stiffness matrix in global main coordinates can
be derived as follows:

F=K.d. (43)
K=T"K_'T (44)
3. Wall Model

In local master coordinates, the equilibrium equation
can be expressed as follows:

leszldzl
K,

(45)

_K +K 1

z3,24x24

(46)

z12,24x24

where d.' and F,' are the displacement vector and the
force vector of local master coordinates for wall model,
respectively, K. ;404" and K554, are the stiffness
matrix converted from local slave coordinates and the
stiffness matrix of the horizontal rigid beam, as shown
in Fig.5.

v
A Local coordinate
system X'Y'Z'

Moy, 8y Moy, Oy
Fays Uay' Fay's Uny:

where u,,, 6,. are the displacement
along the x'-axis, y'-axis and z'-axis, and the rotation
around the x'-axis, y'-axis and z'-axis of the pth node,
respectively; the other symbols correspond to the
gth, mth, and nth node, pr, Fp}, sz, M,., Mp), M,,
are the force along the x'-axis, y'-axis and z'-axis, the
bending moment around the x'-axis, y'-axis and z'-axis
of the pth node, respectively, and the other symbols
correspond to the gth, mth, and nth node, respectively.

The stiffness matrix converted from local slave
coordinates can be expressed as follows:

up_y 5 pz ] gpx Hl ep} s

K.,'=J"K'J

K — Kcl'
‘ Kc2'

where J is the master to slave transformation matrix
in local coordinates, K,' is the stiffness matrix in local
slave coordinates and is made up of two parts: the in-
plane stiffness K,,' and the out-of-plane stiffness K,'".
It should be noted that the stiffness of the shear spring
in each vertical line element should be determined by
considering the deformation compatibility with the
axial spring. The modified compression field theory is
adopted to derive the shear stiffness. The initial out-
of-plane stiffness matrix is determined by the elastic
modulus and Poisson's ratio of concrete. In the latter
loading, the out-of-plane stiffness is reduced according
to changes in the stiftness of the axial spring.
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Fig.5. Coordinates of Master DOF of Wall Element
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—
cl

Sym.

L/2

c2

—j B"DBdA B"DBdydx (52)

H/2
J.H/Z
where L and H are the width and height of the wall
element, respectively, B is the strain matrix, and D is
the elastic matrix.

According to the geometric deformation relationship
and the force synthesis and decomposition, J can be
derived as

-L/2

1
1/2
1/L

1/2
1/L

1/2
-1/L

The equilibrium equation of the horizontal rigid
beam can be expressed as follows:

kG

(54)

where k; is the axial stiffness of the rigid beam.
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The above derivation is conducted in local
coordinates. Before the assembly of the whole stiffness
matrix, local coordinates must be converted to global
coordinates.

The concrete stress-strain relationship proposed
by Shiral and Sato (1981) and the steel stress-strain
relationship incorporating the Bauschinger effect
(Kutay et al., 2006) are adopted to determine the
stiffness of the vertical spring. The well-accepted

(5D

i kvm

m=1

1/2
-1/L

(53)

1

modified compression field theory is used to determine
the stiffness of the horizontal spring.

4. Case Study

The static loading test on one rectangular RC core
wall carried out by Xu (2013) was adopted here to
verify the numerical model that was developed in this
study. The dimensions and steel reinforcement details
are shown in Fig.6.
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Fig.6. Dimensions and Steel Reinforcement Details of the
Tested RC Core Wall

The specimen is modeled by eight wall panels
including four x-axis wall panels and four z-axis wall
panels. Each wall panel is divided into eight wall
elements along the vertical direction. The height of the
lowest two wall elements is 235 mm, and the height of
the other elements is 470 mm, as shown in Fig.7.

Two types of coupling beam stiffness with a different
definition of rotation DOF at the beam-wall joint
were used to simulate the responses of the specimen.
The comparison of the predicted lateral force-top
displacement curve that was obtained by two types of
coupling beam stiffness with test curves is shown in
Fig.8.
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Fig.8. Comparison of Skeleton Curves with Different
Deformation Compatibility Patterns

From Fig.8., it can be found that the predicted
curve obtained by using the vertical deformation
compatibility is much closer to the test curve.

5. Conclusions

A modified macro numerical model for coupled
RC shear/core walls is proposed in this study. In this
model, a three-dimensional multi-vertical-line- element
model with distributed shear spring and out-of-plane
freedom is adopted to simulate the wall unit, and a one-
dimensional line element with rotation DOF defined
on the basis of vertical deformation compatibility is
adopted to simulate the coupling beam. Compared
with the wall models proposed in the literature, the
analytic model proposed in this study is more accurate
for considering the shear deformation of the wall
element, and the out-of-plane stiffness of the shear
wall is also considered. Compared with the analytic
models proposed by previous researchers for coupling
beams, the proposed model is more accurate when
considering the deformation compatibility between the
beam and the wall model and is more in line with the
actual situation. The accuracy of this model is verified
by the case study. It is found that the predicted result
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from the model with vertical deformation compatibility
is more accurate than that from the model with
horizontal deformation compatibility. The macro model
developed in this study has advantages of reduced
computation effort and high precision. It is appropriate
for engineering application.
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